Learn More
A major challenge for social theory is to explain the importance of kin discrimination for the evolution of altruism. One way to assess the importance of kin discrimination is to test its effects on increasing relatedness within groups. The social amoeba Dictyostelium discoideum aggregates to form a fruiting body composed of dead stalk and live spores.(More)
The control of cheating is important for understanding major transitions in evolution, from the simplest genes to the most complex societies. Cooperative systems can be ruined if cheaters that lower group productivity are able to spread. Kin-selection theory predicts that high genetic relatedness can limit cheating, because separation of cheaters and(More)
Recognition of relatives is important in microbes because they perform many behaviors that have costs to the actor while benefiting neighbors. Microbes cooperate for nourishment, movement, virulence, iron acquisition, protection, quorum sensing, and production of multicellular biofilms or fruiting bodies. Helping others is evolutionarily favored if it(More)
Studies of genetic population structures of clonally reproducing macro-organisms have revealed large areas where only one clone is found. These areas, referred to as clonal patches, have not been shown to occur in free-living microbes until now. In free-living microbes, high genetic diversity at local scales is usually maintained by high rates of dispersal.(More)
Multicellular tissue compatibility, or histocompatibility, restricts fusion to close kin. Histocompatibility depends on hypervariable cue genes, which often have more than 100 alleles in a population. To explain the evolution of histocompatibility, I here take a historical approach. I focus on the specific example of marine invertebrate histocompatibility.(More)
Social amoebae aggregate to form a multicellular slug that migrates some distance. Most species produce a stalk during migration, but some do not. We show that Dictyostelium giganteum, a species that produces stalk during migration, is able to traverse small gaps and utilize bacterial resources following gap traversal by shedding live cells. In contrast, we(More)
  • 1