Owen M. McDougal

Learn More
Most of the >50,000 different pharmacologically active peptides in Conus venoms belong to a small number of gene superfamilies. In this work, the M-conotoxin superfamily is defined using both biochemical and molecular criteria. Novel excitatory peptides purified from the venoms of the molluscivorous species Conus textile and Conus marmoreus all have a(More)
The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich peptides belonging to the M-superfamily have three loop regions and the cysteine arrangement: CC–C–C–CC, where the dashes represent loops one, two, and three, respectively. Characterization of M-superfamily peptides has demonstrated that diversity in cystine connectivity(More)
The M-superfamily, one of eight major conotoxin superfamilies found in the venom of the cone snail, contains a Cys framework with disulfide-linked loops labeled 1, 2, and 3 (-CC (1) C (2) C (3) CC-). M-Superfamily conotoxins can be divided into the m-1, -2, -3, and -4 branches, based upon the number of residues located in the third Cys loop between the(More)
The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires(More)
Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagen types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics(More)
We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of(More)
Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to(More)
α-Conotoxin MII (α-CTxMII) is a potent and selective peptide antagonist of neuronal nicotinic acetylcholine receptors (nAChR's). Studies have shown that His9 and His12 are significant determinants of toxin binding affinity for nAChR, while Glu11 may dictate differential toxin affinity between nAChR isoforms. The protonation state of these histidine residues(More)
Conotoxin mr3a from the venom of Conus marmoreus, a novel peptide that induces rolling seizures in mice, has the peptide sequence GCCGSFACRFGCVOCCV, where O is trans-4-hydroxyproline, and the chain is cross-linked with disulfide bonds between Cys-2 and Cys-16, Cys-3 and Cys-12, and Cys-8 and Cys-15. The tertiary structure of mr3a was determined by 2D 1H NMR(More)
The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing(More)