Otto K. Harling

Learn More
During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes(More)
A phase I trial was designed to evaluate normal tissue tolerance to neutron capture therapy (NCT); tumor response was also followed as a secondary endpoint. Between July 1996 and May 1999, 24 subjects were entered into a phase 1 trial evaluating cranial NCT in subjects with primary or metastatic brain tumors. Two subjects were excluded due to a decline in(More)
PURPOSE A Monte Carlo-based treatment planning code for boron neutron capture therapy (BNCT), called NCTPLAN, has been developed in support of the New England Medical Center-Massachusetts Institute of Technology program in BNCT. This code has been used to plan BNCT irradiations in an ongoing peripheral melanoma BNCT protocol. The concept and design of the(More)
The status of fission reactor-based neutron beams for neutron capture therapy (NCT) is reviewed critically. Epithermal neutron beams, which are favored for treatment of deep-seated tumors, have been constructed or are under construction at a number of reactors worldwide. Some of the most recently constructed epithermal neutron beams approach the theoretical(More)
Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated(More)
A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed(More)
Boron neutron capture therapy (BNCT) is based on the preferential targeting of tumor cells with (10)B and subsequent activation with thermal neutrons to produce a highly localized radiation. In theory, it is possible to selectively irradiate a tumor and the associated infiltrating tumor cells with large single doses of high-LET radiation while sparing the(More)
An intercomparison of physical dosimetry methods used at the Massachusetts Institute of Technology (MIT) and Brookhaven National Laboratory was completed to enable retrospective analysis of BNCT trials. Measurements were performed under reference conditions pertinent to clinical irradiations at the epithermal neutron beam facility of the Brookhaven Medical(More)
One of the two overriding conditions for successfulBNCT is that there must be a sufficientnumber of thermal neutrons delivered to each ofthe boronated cells in the tumour bed (targetvolume). Despite the poor experience with BNCT inthe USA some 40 years ago, the continuedapparent success of BNCT in Japan since 1968,lead indirectly to the re-start of clinical(More)
The motivation for this work was an unexpected occurrence of lung side effects in two human subjects undergoing cranial boron neutron capture therapy (BNCT). The objectives were to determine experimentally the biological weighting factors in rat lung for the high-LET dose components for a retrospective assessment of the dose to human lung during cranial(More)