Ottavia Bertolli

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
This work is an extension of our recent work on joint activity reconstruction/motion estimation (JRM) from positron emission tomography (PET) data. We performed JRM by maximization of the penalized log-likelihood in which the probabilistic model assumes that the same motion field affects both the activity distribution and the attenuation map. Our previous(More)
This work provides an insight into positron emission tomography (PET) joint image reconstruction/motion estimation (JRM) by maximization of the likelihood, where the probabilistic model accounts for warped attenuation. Our analysis shows that maximum-likelihood (ML) JRM returns the same reconstructed gates for any attenuation map (μ-map) that is a(More)
Positron range is an important spatial resolution limiting factor in PET. When imaging inside a magnetic field the positron range is non-uniformly affected. A decrease of the positron range is expected in the directions perpendicular to the direction of the magnetic field, whereas no variation is expected in the direction of the magnetic field. Monte Carlo(More)
Positron range is one important physical limitation to spatial resolution in PET imaging. We present a method to take account of positron range blurring in iterative reconstruction by including specific positron range kernels approximating the annihilation distribution in the forward projection operation [1]. The correction method is implemented within the(More)
  • 1