Osmo O E Hormi

Learn More
Sequential regioselective periodate-chlorite oxidation was employed as a new and efficient pretreatment to enhance the nanofibrillation of hardwood cellulose pulp through homogenization. The oxidized celluloses with carboxyl contents ranging from 0.38 to 1.75 mmol/g could nanofibrillate to highly viscous and transparent gels with yields of 100-85% without(More)
Biocomposite films based on cellulose and alginate were produced using unmodified birch pulp, microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) and birch pulp derivate, nanofibrillated anionic dicarboxylic acid cellulose (DCC), having widths of fibres ranging from 19.0 μm to 25 nm as cellulose fibre materials. Ionically cross-linked(More)
To obtain information about the effect that methanesulfonamide has in the hydrolysis step in Sharpless asymmetric dihydroxylation, a series of aliphatic and conjugated aromatic olefins were dihydroxylated with and without methanesulfonamide. The hypothesis in this study was that methanesulfonamide is a cosolvent that aids in the transfer of the hydroxide(More)
The aqueous pre-treatment of cellulose with periodate and Girard' reagent T was employed as a novel and promising method to promote nanofibrillation of wood pulp and to obtain cellulosic nanofibrils with cationic functionality (CNFC). To demonstrate the feasibility of CNFCs in particle aggregation, a kaolin clay model suspension was aggregated by the CNFCs.(More)
Hybrid organic-inorganic films mimicking natural nacre-like composite structures were fabricated from cellulose nanofibers obtained from sequential periodate-chlorite oxidation treatment and talc platelets, using a simple vacuum-filtration method. As a pretreatment, commercial talc aggregates were individualized into well-dispersed talc platelets using a(More)
Cross-linked and quaternized pine sawdust was tested for vanadium removal from a synthetic aqueous solution as well as from real industrial wastewater which had a considerable amount of vanadium and other ions such as sulphate, ammonium and nickel. The maximum vanadium sorption capacity of the modified pine sawdust was found to be 130 mg/g in synthetic(More)
Nanocellulosic materials with good thermal stability are highly desirable for applications, such as reinforcement and filler agents in composites. In the present work, phosphonated cellulose was utilized to obtain nanocelluloses with good thermal stability and potential intumescent properties. Phosphonated cellulose was synthetized from birch pulp via(More)
A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane(More)
A stable, bioactive cellulose acetate (CA) surface was developed by functionalizing the surface with highly thermostable avidin form. The CA films were first functionalized with a mixture of 3-aminopropyltrimethoxysilane and tetraethoxysilane to introduce free amino groups onto the surface of CA films. Free amino groups were functionalized with(More)
The effect of temperature, sulphate and phosphate, and the initial nitrate concentration on nitrate removal was studied with synthetic solutions. Chemically modified pine sawdust (Pinus sylvestris) anion exchange resin (MPSD) was used in the sorption studies. The resin was synthesized by reacting pine sawdust with epichlorohydrin, ethylenediamine and(More)