Learn More
Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to(More)
Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer's disease. The unmet need of effective therapy for Alzheimer's disease, combined with problematic pharmacological approaches, led the field to explore(More)
The formation and accumulation of toxic amyloid-β peptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the(More)
T cells are vulnerable to age-associated changes. Vitamin E has been shown to improve T cell functions in the old. We studied gene expression profiles of T cells to better understand the underlying mechanisms of age and vitamin E-induced changes in T cell function. Young and old C57BL mice were fed diets containing 30 (control) or 500 (supplemented) ppm of(More)
The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for(More)
The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer's disease. Previously we reported the development of(More)
Accumulation of amyloid-β (Aβ) peptides and amyloid plaque deposition in brain is postulated as a cause of Alzheimer's disease (AD). The precise pathological species of Aβ remains elusive although evidence suggests soluble oligomers may be primarily responsible for neurotoxicity. Crenezumab is a humanized anti-Aβ monoclonal IgG4 that binds multiple forms of(More)
  • 1