Oscar Schofield

Learn More
Trait-based approaches to community structure are increasingly used in terrestrial ecology. We show that such an approach, augmented by a mechanistic analysis of trade-offs among functional traits, can be successfully used to explain community composition of marine phytoplankton along environmental gradients. Our analysis of literature on major functional(More)
The community structure and ecological function of contemporary marine ecosystems are critically dependent on eukaryotic phytoplankton. Although numerically inferior to cyanobacteria, these organisms are responsible for the majority of the flux of organic matter to higher trophic levels and the ocean interior. Photosynthetic eukaryotes evolved more than 1.5(More)
The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP(More)
Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic phytoplankton that gave rise to two major plastid superfamilies. The green(More)
In many community assemblages, the abundance of organisms is a power-law function of organism size. In phytoplankton communities, changes in size structure associated with increases in resource availability and total biomass have often been interpreted as a release from grazer control. A metapopulation-like approach is used to scale up from the individual(More)
[1] The first sustained glider observations in the Middle Atlantic Bight are used to describe the seasonal evolution of hydrographic fields off New Jersey. Near-surface temperatures respond to the seasonal cycle of surface heating, while waters at depth are primarily influenced by advection of cold waters from the north in the cold-pool during(More)
The size structure of phytoplankton assemblages strongly influences energy transfer through the food web and carbon cycling in the ocean. We determined the macroevolutionary trajectory in the median size of dinoflagellate cysts to compare with the macroevolutionary size change in other plankton groups. We found the median size of the dinoflagellate cysts(More)
Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect(More)
Eukaryotic genome size varies over five orders of magnitude; however, the distribution is strongly skewed toward small values. Genome size is highly correlated to a number of phenotypic traits, suggesting that the relative lack of large genomes in eukaryotes is due to selective removal. Using phylogenetic contrasts, we show that the rate of genome size(More)