Learn More
Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at(More)
AIMS Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). RESULTS Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that(More)
Copper (Cu) is an essential metal that is toxic at high concentrations. Thus, pathogens often rely on host Cu for growth, but host cells can hyperaccumulate Cu to exert antimicrobial effects. The human fungal pathogen Cryptococcus neoformans encodes many Cu-responsive genes, but their role in infection is unclear. We determined that pulmonary C. neoformans(More)
This report intends to provide the reader with a deeper insight in the chemical, and extensively biological, characteristics of the metallothionein (MT) system. We have devoted nearly 20 years to the study of MTs and this has allowed us to form what we believe is a more complete picture of this peculiar family of metalloproteins. At the beginning of the(More)
Variable environmental availability of metal ions represents a constant challenge for most organisms, so that during evolution, they have optimised physiological and molecular mechanisms to cope with this particular requirement. Metallothioneins (MTs) are proteins that play a major role in metal homeostasis and as a reservoir. The MT gene/protein systems of(More)
Metallothionein (MT)-III, a member of the MT family of metal-binding proteins, is mainly expressed in the CNS and is abundant in glutamatergic neurons. Results in genetically altered mice indicate that MT-III may play neuroprotective roles in the brain, but the mechanisms through which this protein functions have not been elucidated. The aim of this work(More)
Drosophila MTO metal binding features were analyzed for comparison with MTN, the paralogous Drosophila metallothionein, and to classify MTO as either zinc- or copper-thionein. This was achieved by a combination of in vivo, in vitro and in silico methodologies. All the results unambiguously classified MTO as a second Drosophila copper-thionein, putting(More)
BACKGROUND The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu(+) or Cd(2+). They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are(More)
Metallothionein-3 (MT3) is one of the four mammalian metallothioneins (MT), and is constitutively synthesized in the brain. MT3 acts both intracellularly and extracellularly in this organ, performing functions related to neuronal growth and physiological metal (Zn and Cu) handling. It appears to be involved in the prevention of neurodegenerative disorders(More)
Metallothioneins (MTs) are proteins that play a major role in metal homeostasis and/or detoxification in all kind of organisms. The MT gene/protein system of gastropod molluscs provides an invaluable model to study the diversification mechanisms that have enabled MTs to achieve metal-binding specificity through evolution. Most pulmonate gastropods,(More)