Oscar Pedrola

Learn More
The ever-increasing Internet Protocol (IP) traffic volume has finally brought to light the high inefficiency of current wavelength-routed over rigid-grid optical networks in matching the client layer requirements. Such an issue results in the deployment of large-size, expensive, and power-consuming IP/Multi-Protocol Label Switching (MPLS) layers to perform(More)
Network operators are facing the problem of dimensioning their networks for the expected huge IP traffic volumes while keeping constant or even reducing the connectivity prices. Therefore, new architectural solutions able to cope with the expected traffic increase in a more cost-effective way are needed. In this work, we study the survivable(More)
Most research works in optical burst switching (OBS) networks do not take into account the impact of physical layer impairments (PLIs) either by considering fully transparent (i.e., with optical 3R regeneration) or opaque (i.e., with electrical 3R regeneration) networks. However, both solutions are not feasible due to the technological requirements of the(More)
Most research works in optical burst switching (OBS) networks do not take into account the impact of physical layer impairments (PLIs) either by considering fully transparent (i.e., using optical 3R regeneration) or opaque (i.e., electrical 3R regeneration) networks. However, both solutions are not feasible for different reasons. In this paper, we propose a(More)
The deployment of translucent optical networks is considered the most promising short term solution to decrease costs and energy consumption in optical backbone networks. In fact, translucent wavelength switched optical networks (WSONs) have recently received great attention from the research community due to their technological maturity. However, the(More)
In this paper, we deal with the physical layer impairments (PLIs) in optical burst switching (OBS). In particular we present a formulation of the routing and regenerator placement and dimensioning (RRPD) problem for a feasible translucent OBS (T-OBS) network architecture. Since addressing the joint RRPD problem results in an extremely complex undertaking,(More)
In this paper, we present a survey comparing different deflection routing based techniques applied to optical burst switching (OBS) networks. For such study we consider the E-OBS architecture proposed in [1] which is an advantageous solution for OBS networks since routing decision can be taken freely inside the network without constraints on the length of(More)
In this paper we deal with the survivable internet protocol (IP)/multi-protocol label switching (MPLS)-over-wavelength switched optical network (WSON) multi-layer network optimization problem (SIMNO). This problem entails planning an IP/MPLS network layer over a photonic mesh infrastructure whilst, at the same time, ensuring the highest availability of(More)
The impact of the frequency grid on the CAPEX required to deploy a multi-layer IP/MPLS-over-EON is analyzed. Results showing significant savings at the electronic layer motivate the introduction of narrower grids with enhanced BV-WSS. © 2011 Optical Society of America OCIS codes: (060.0060) Fiber optics and optical communications; (060.4250) Networks