Oscar Méndez-Lucio

  • Citations Per Year
Learn More
Structure-activity relationships (SAR) of compound databases play a key role in hit identification and lead optimization. In particular, activity cliffs, defined as a pair of structurally similar molecules that present large changes in potency, provide valuable SAR information. Herein, we introduce the concept of activity cliff generator, defined as a(More)
Obesity and the metabolic syndrome are pandemic diseases with high morbidity and mortality. With the aim of discovering novel therapies for those diseases, the cannabinoid receptor 1 (CB1), which has been validated as a target for treating appetitive disorders, is now considered a novel target for the design of anti-obesity compounds. Our main goal was to(More)
Activation of peroxisome proliferator-activated receptor (PPAR) subtypes offers a promising strategy for the treatment of diabetes mellitus and metabolic diseases. Selective and dual PPAR agonists have been developed and the systematic characterization of their structure-activity relationships (SAR) is of major significance. Herein, we report a systematic(More)
Structure-activity characterization of molecular databases plays a central role in drug discovery. However, the characterization of large databases containing structurally diverse molecules with several end-points represents a major challenge. For this purpose, the use of chemoinformatic methods plays an important role to elucidate structure-activity(More)
Benzimidazole-2-carbamate derivatives (BzCs) are the most commonly used antiparasitic drugs for the treatment of protozoan and helminthic infections. BzCs inhibit the microtubule polymerization mechanism through binding selectively to the β-tubulin subunit in which mutations have been identified that lead to drug resistance. Currently, the lack of(More)
Molecular complexity is becoming a crucial concept in drug discovery. It has been associated with target selectivity, success in progressing into clinical development and compound safety, among other factors. Multiple metrics have been developed to quantify molecular complexity and explore complexity-property relationships. However, there is no general(More)
AIM Fungi are valuable resources for bioactive secondary metabolites. However, the chemical space of fungal secondary metabolites has been studied only on a limited basis. Herein, we report a comprehensive chemoinformatic analysis of a unique set of 207 fungal metabolites isolated and characterized in a USA National Cancer Institute funded drug discovery(More)
DNA hypomethylating drugs that act on DNA methyltransferase (DNMT) isoforms are promising anticancer agents. By using a well-characterized live-cell system to measure DNA methylation revisions (imprints), we characterize olsalazine, an approved anti-inflammatory drug, as a novel DNA hypomethylating agent. The cell-based screen used in this work is highly(More)
Inhibitors of human DNA methyltransferases (DNMT) are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure-activity relationships.(More)
High-throughput screening (HTS) campaigns are routinely performed in pharmaceutical companies to explore activity profiles of chemical libraries for the identification of promising candidates for further investigation. With the aim of improving hit rates in these campaigns, data-driven approaches have been used to design relevant compound screening(More)