Oscar L. Haigh

Learn More
We describe the construction and evaluation of a recombinant hepatitis B surface antigen (HBsAg)-vectored DNA vaccine encoding the E7 and E6 tumor-associated oncoproteins of human papillomavirus (HPV) type 16. We show the induction of effector and memory cytotoxic T lymphocyte responses to E7 and E6 class I-restricted epitopes after a single immunization,(More)
The barrier morphology of skin provides major obstacles for the application of siRNA for gene silencing, which current delivery technologies do not effectively overcome. Emerging technologies utilise microprojection array devices to penetrate into the skin epidermis and dermis for delivery of drug payloads. Delivery of siRNA by such devices has been proven(More)
We have previously demonstrated that the potent immunogenicity of hepatitis B surface antigen (HBsAg) may be exploited to deliver foreign antigens for cytotoxic T-lymphocyte (CTL) induction. Here we demonstrate that a single low-dose immunization with rHBsAg DNA is sufficient to prime for CTL responses against encoded foreign epitope and that the responses(More)
Dysfunction in effector memory has been proposed to contribute to autoimmunity in type 1 diabetes (T1D). Using a unique cohort of age- and sex-matched T1D patients, nonaffected siblings, and unrelated control children, we undertook a detailed analysis of proliferation, activation, effector responses, and apoptosis in reactivated CD4(+)Tm cells during T-cell(More)
Vaccines delivered to the skin by microneedles-with and without adjuvants-have increased immunogenicity with lower doses than standard vaccine delivery techniques such as intramuscular or intradermal injection. However, the mechanisms underlying this skin-mediated "adjuvant" effect are not clear. Here, we show that the dynamic application of a(More)
DNA vaccines have many advantages such as thermostability and the ease and rapidity of manufacture; for example, in an influenza pandemic situation where rapid production of vaccine is essential. However, immunogenicity of DNA vaccines was shown to be poor in humans unless large doses of DNA are used. If a highly efficacious DNA vaccine delivery system(More)
We propose the replacement of endogenous epitopes with foreign epitopes to exploit the highly immunogenic hepatitis B surface antigen (HBsAg) as a vaccine vector to elicit disease-protective cytotoxic T-lymphocyte (CTL) responses. Locations were defined within the HBsAg gene where replacements of DNA encoding HBsAg epitopes may be made to generate(More)
  • 1