Learn More
An increasing number of genomic studies interrogating more than one molecular level is published. Bioinformatics follows biological practice, and recent years have seen a surge in methodology for the integrative analysis of genomic data. Often such analyses require knowledge of which elements of one platform link to those of another. Although important,(More)
The development of targeted inhibitors, like vemurafenib, has greatly improved the clinical outcome of BRAF(V600E) metastatic melanoma. However, resistance to such compounds represents a formidable problem. Using whole-exome sequencing and functional analyses, we have investigated the nature and pleiotropy of vemurafenib resistance in a melanoma patient(More)
We have previously reported a gene expression signature that is a powerful predictor of poor clinical outcome in breast cancer. Among the seventy genes in this expression profile is a gene of unknown function: TSPYL5 (TSPY-like 5, also known as KIAA1750). TSPYL5 is located within a small region at chromosome 8q22 that is frequently amplified in breast(More)
The tumour antigen PReferentially expressed Antigen of MElanoma (PRAME) is expressed in a variety of malignancies, including breast cancer. We have analysed PRAME gene expression in relation to clinical outcome for 295 primary breast cancer patients. Kaplan-Meier survival curves show a correlation of PRAME expression levels with increased rates of distant(More)
Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we present CopywriteR, which eludes these problems by(More)
Osteosarcoma is an aggressive bone tumor that preferentially develops in adolescents. The tumor is characterized by an abundance of genomic aberrations, which hampers the identification of the driver genes involved in osteosarcoma tumorigenesis. Our study aims to identify these genes by the investigation of focal copy number aberrations (CNAs, <3 Mb). For(More)
Array Comparative Genomic Hybridization (aCGH) is a widely used technique to assess chromosomal copy number alterations. Chromosomal content, however, is often not uniform throughout cell populations. Here we evaluated to what extent aCGH can detect DNA copy number alterations in heterogeneous cell populations. A systematic evaluation is currently lacking,(More)
BACKGROUND Lymph node (LN) yield in colon cancer resection specimens is an important indicator of treatment quality and has especially in early-stage patients therapeutic implications. However, underlying disease mechanisms, such as microsatellite instability (MSI), may also influence LN yield, as MSI tumors are known to exhibit more prominent lymphocytic(More)
BACKGROUND Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood.(More)
BACKGROUND Patients with peritoneal metastases (PMs) originating from colorectal carcinoma (CRC) are curatively treated by cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) with mitomycin C (MMC). We aim to improve patient selection for HIPEC by predicting MMC sensitivity. METHODS The MMC sensitivity was determined for 12(More)