Learn More
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework(More)
A major goal of visualization is to appropriately express knowledge of scientific data. Generally, gathering visual information contained in the volume data often requires a lot of expertise from the final user to setup the parameters of the visualization. One way of alleviating this problem is to provide the position of inner structures with different(More)
In volume visualization, the voxel visibitity and materials are carried out through an interactive editing of Transfer Function. In this paper, we present a two-level GPU-based labeling method that computes in times of rendering a set of labeled structures using the Adaboost machine learning classifier. In a pre-processing step, Adaboost trains a binary(More)
  • 1