Learn More
This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and(More)
Caspr/paranodin, a neuronal transmembrane glycoprotein, is essential for the structure and function of septate-like paranodal axoglial junctions at nodes of Ranvier. A closely related protein, Caspr2, is concentrated in juxtaparanodal regions where it associates indirectly with the shaker-type potassium channels. Although ultrastructural studies indicate(More)
Acute myelogenous leukemia (AML) is the most common adult leukemia, characterized by the clonal expansion of immature myeloblasts initiating from rare leukemic stem (LS) cells. To understand the functional properties of human LS cells, we developed a primary human AML xenotransplantation model using newborn nonobese diabetic/severe combined(More)
To identify large proteins with an EGF-like-motif in a systematic manner, we developed a computer-assisted method called motif-trap screening. The method exploits 5'-end single-pass sequence data obtained from a pool of cDNAs whose sizes exceed 5 kb. Using this screening procedure, we were able to identify five known and nine new genes for proteins with(More)
We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles.(More)
Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which(More)
MicroRNAs (miRNAs) are incorporated into miRNP complexes and regulate protein expression post-transcriptionally through binding to 3'-untranslated regions of target mRNAs. Here we describe a recapitulation of let-7 miRNA-mediated translational repression in a cell-free system, which was established with extracts prepared from HEK293F cells overexpressing(More)
The human gene for the fourth member of the protein 4.1 family, KIAA0987, was recently identified by comprehensive cDNA analysis. To further characterize the corresponding gene and its product in rats, we cloned and sequenced rat KIAA0987 cDNA. RNA blot analyses revealed that the rat KIAA0987 gene was abundantly expressed only in the brain, kidney, and(More)
As a base for human transcriptome and functional genomics, we created the "full-length long Japan" (FLJ) collection of sequenced human cDNAs. We determined the entire sequence of 21,243 selected clones and found that 14,490 cDNAs (10,897 clusters) were unique to the FLJ collection. About half of them (5,416) seemed to be protein-coding. Of those, 1,999(More)
Recent progress in biological clock research has facilitated genetic analysis of circadian rhythm sleep disorders, such as delayed sleep phase syndrome (DSPS) and non-24-h sleep-wake syndrome (N-24). We analyzed the human period3 (hPer3) gene, one of the human homologs of the Drosophila clock-gene period (Per), as a possible candidate for rhythm disorder(More)