Osamu Kaneko

Learn More
The surfaces of the infected erythrocyte (IE) and the merozoite, two developmental stages of malaria parasites, expose antigenic determinants to the host immune system. We report on surface-associated interspersed genes (surf genes), which encode a novel polymorphic protein family, SURFINs, present on both IEs and merozoites. A SURFIN expressed in 3D7(More)
Erythrocyte invasion is an essential step in the establishment of host infection by malaria parasites, and is a major target of intervention strategies that attempt to control the disease. Recent proteome analysis of the closely-related apicomplexan parasite, Toxoplasma gondii, revealed a panel of novel proteins (RONs) located at the neck portion of the(More)
Plasmodium falciparum malaria is brought about by the asexual stages of the parasite residing in human red blood cells (RBC). Contact between the erythrocyte surface and the merozoite is the first step for successful invasion and proliferation of the parasite. A number of different pathways utilised by the parasite to adhere and invade the host RBC have(More)
A member of a Plasmodium receptor family for erythrocyte invasion was identified on chromosome 13 from the Plasmodium falciparum genome sequence of the Sanger Centre (Cambridge, U.K.). The protein (named BAEBL) has homology to EBA-175, a P. falciparum receptor that binds specifically to sialic acid and the peptide backbone of glycophorin A on erythrocytes.(More)
The Plasmodium falciparum high molecular mass rhoptry protein ('PfRhopH') complex is important for parasite growth and comprises three distinct gene products: RhopH1, RhopH2 and RhopH3. We have previously shown that P. falciparum RhopH1 is encoded by either PFC0110w (clag3.2) or PFC0120w (clag3.1), members of the previously-named clag (cytoadherence-linked(More)
Malarial merozoite rhoptries contain a high molecular mass protein complex called RhopH. RhopH is composed of three polypeptides, RhopH1, RhopH2, and RhopH3, encoded by distinct genes. Using monoclonal antibody-purified protein complex from both Plasmodium falciparum and Plasmodium yoelii, peptides were obtained by digestion of RhopH1 and their sequence(More)
The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor-ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in(More)
The high molecular mass protein complex (RhopH) in the rhoptries of the malaria parasite consists of three distinct polypeptides with estimated sizes in Plasmodium falciparum of 155kDa (PfRhopH1), 140kDa (PfRhopH2) and 110kDa (PfRhopH3). Using a number of reagents, including a new mAb 4E10 that is specific for the PfRhopH complex, it was shown that the(More)
Allelic variation in the Plasmodium falciparum merozoite surface protein 1 (MSP1) gene is expressed as an association of allelic types in variable blocks. In this study, a PCR strategy that can detect 24 different MSP1 association types was used to investigate allelic variation in the MSP1 gene. We identified 236 distinct association type clones in 136 wild(More)