Learn More
Disruption of transcriptional control of cellular genes by human T-cell leukemia virus type-1 (HTLV-1) is thought to be associated, at least in part, with the development of adult T-cell leukemia. It has been reported that activating protein-1 (AP-1) is dysregulated by HTLV-1 infection. HTLV-1-encoded Tax elevates AP-1 activity through the induction of AP-1(More)
In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural analysis of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1(More)
HTLV-1 infection causes adult T-cell leukemia (ATL). The development of ATL is thought to be associated with disruption of transcriptional control of cellular genes. HTLV-1 basic leucine-zipper (bZIP) factor, HBZ, is encoded by the complementary strand of the provirus. We previously reported that HBZ interacts with c-Jun and suppresses its transcriptional(More)
Human T-cell leukemia virus type 1 (HTLV-1) encodes an antisense viral gene product termed HTLV-1 basic leucine-zipper factor (HBZ). HBZ forms heterodimers with c-Jun, a member of the AP-1 family, and promotes its proteasomal degradation. Although most proteasomal substrates are targeted for degradation via conjugation of polyubiquitin chains, we show that(More)
Aberrant accumulation of beta-catenin is closely related to carcinogenesis. Mutations in the p53 gene are reported to induce the aberrant accumulation of beta-catenin in the absence of dysfunction in the glycogen synthase kinase 3beta (GSK3beta)-mediated degradation pathway, but the mechanism remains incompletely understood. Here, we show that human(More)
  • 1