Learn More
Prior research points to the importance of psychostimulants in improving self-control. However, the neural substrates underlying such improvement remain unclear. Here, in a pharmacological functional MRI study of the stop signal task, we show that methylphenidate (as compared with placebo) robustly decreased stop signal reaction time (SSRT), an index of(More)
By blocking dopamine and norepinephrine transporters, methylphenidate affects cognitive performance and regional brain activation in healthy individuals as well as those with neuropsychiatric disorders. Resting-state connectivity evaluates the functional integrity of a network of brain regions. Here, we examined how methylphenidate effects resting-state(More)
Many previous studies suggest the potential of psychostimulants in improving cognitive functioning. Our earlier pharmacological brain imaging study showed that intravenous methylphenidate (MPH) improves inhibitory control by altering cortico-striato-thalamic activations in cocaine-dependent (CD) individuals. Here we provide additional evidence for the(More)
Detection of a salient stimulus is critical to cognitive functioning. A stimulus is salient when it appears infrequently, carries high motivational value, and/or when it dictates changes in behavior. Individuals with neurological conditions that implicate altered catecholaminergic signaling, such as those with attention deficit hyperactivity disorder, are(More)
  • 1