Orsolya Kréneisz

Learn More
Central chemoreception is the mechanism by which CO(2)/pH sensors regulate breathing in response to tissue pH changes. There is compelling evidence that pH-sensitive neurons in the retrotrapezoid nucleus (RTN) are important chemoreceptors. Evidence also indicates that CO(2)/H(+)-evoked adenosine 5'-triphosphate (ATP) release in the RTN, from pH-sensitive(More)
Revised Submission (JN-00544-2010R1) 1 2 3 4 Astrocytes in the retrotrapezoid nucleus sense H by inhibition of a Kir4.1-Kir5.1-like 5 current and may contribute to chemoreception by a purinergic mechanism 6 7 8 Ian C. Wenker*, Orsolya Kréneisz, Akiko Nishiyama, Daniel K. Mulkey 9 10 Department of Physiology and Neurobiology, University of Connecticut, 75 N.(More)
To understand the role of mitochondrial uncoupling protein (UCP) in regulating insulin signaling and glucose homeostasis, we created transgenicDrosophila lines with targeted UCP expression in insulin producing cells (IPCs). Increased UCP activity in IPCs results in decreased steady state Ca(2+) levels in IPCs as well as decreased PI3K activity and increased(More)
We sought to understand the mechanisms underlying glucose sensing in Drosophila melanogaster. We found that insulin-producing cells (IPCs) of adult Drosophila respond to glucose and glibenclamide with a burst-like pattern of activity. Under controlled conditions IPCs have a resting membrane potential of -62+/-4 mV. In response to glucose or glibenclamide,(More)
AMP-activated protein kinase (AMPK) is a serine/threonine kinase activated by conditions that increase the AMP : ATP ratio. In carotid body glomus cells, AMPK is thought to link changes in arterial O(2) with activation of glomus cells by inhibition of unidentified background K(+) channels. Modulation by AMPK of individual background K(+) channels has not(More)
Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in response to changes in tissue pH. A region of the brain stem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception (23), and recent evidence suggests that RTN chemoreception involves two interrelated(More)
Mulkey DK, Wenker IC, Kréneisz O. Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus. J Appl Physiol 108: 1433–1439, 2010. First published January 21, 2010; doi:10.1152/japplphysiol.01240.2009.—Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in(More)
  • 1