Ornella Parolini

Learn More
Placental tissue draws great interest as a source of cells for regenerative medicine because of the phenotypic plasticity of many of the cell types isolated from this tissue. Furthermore, placenta, which is involved in maintaining fetal tolerance, contains cells that display immunomodulatory properties. These two features could prove useful for future cell(More)
Bone marrow (BM) multipotent mesenchymal stromal cells (MSCs) present with multipotent differentiation potential and immunomodulatory properties. As an alternative to bone marrow, we have examined fetal membranes, amnion and chorion, of term human placenta as a potential source of multipotent MSCs. Here we show that amnion mesenchymal cells (AMCs) and(More)
Cytokines are critical in regulating unresponsiveness versus immunity towards enteric antigens derived from the intestinal flora and ingested food. There is increasing evidence that butyrate, a major metabolite of intestinal bacteria and crucial energy source for gut epithelial cells, also possesses anti-inflammatory properties. Its influence on cytokine(More)
The aim of this work was to isolate, for the first time, progenitor-like cells from the epithelial (AECs) and mesenchymal (AMCs) portions of the horse amniotic membrane, and to define the biological properties of these cells. AECs displayed polygonal epithelial morphology, while AMCs were fibroblast-like. Usually, six to eight passages were reached before(More)
Human amniotic membranes and amniotic fluid have attracted increasing attention in recent years as a possible reserve of stem cells that may be useful for clinical application in regenerative medicine. Many studies have been conducted to date in terms of the differentiation potential of these cells, with several reports demonstrating that cells from both(More)
In addition to the placenta, umbilical cord and amniotic fluid, the amniotic membrane is emerging as an immensely valuable and easily accessible source of stem and progenitor cells. This concise review will focus on the stem/progenitor cell properties of human amniotic epithelial and mesenchymal stromal cells and evaluate the effects exerted by these cells(More)
BACKGROUND Fetal membranes are tissues of particular interest for several reasons, including their role in preventing rejection of the fetus and their early embryologic origin. which may entail progenitor potential. The immunologic reactivity and the transplantation potential of amnion and chorion cells, however, remain to be elucidated. METHODS Amnion(More)
An urgent current need in regenerative medicine is that of identifying a plentiful, safe and ethically acceptable stem cell source for the development of therapeutic strategies to restore functionality in damaged or diseased organs and tissues. In this context, human term placenta represents a prime candidate, as it is available in nearly unlimited supply,(More)
Cells derived from the amniotic foetal membrane of human term placenta have drawn particular attention mainly for their plasticity and immunological properties, which render them interesting for stem-cell research and cell-based therapeutic applications. In particular, we have previously demonstrated that amniotic mesenchymal tissue cells (AMTC) inhibit(More)
Cells derived from the amniotic membranes of human term placenta have drawn much interest for their characteristics of multipotency and low immunogenicity, supporting a variety of possible clinical applications in the field of cell transplantation and regenerative medicine. We have previously shown that cells derived from the mesenchymal region of human(More)