Learn More
An easy-to-use, versatile and freely available graphic web server, FoldIndex is described: it predicts if a given protein sequence is intrinsically unfolded implementing the algorithm of Uversky and co-workers, which is based on the average residue hydrophobicity and net charge of the sequence. FoldIndex has an error rate comparable to that of more(More)
What evolutionary forces shape genes that contribute to the risk of human disease? Do similar selective pressures act on alleles that underlie simple versus complex disorders [1-3]? Answers to these questions will shed light onto the origin of human disorders (e.g., [4]) and help to predict the population frequencies of alleles that contribute to disease(More)
Olfactory receptor (OR) genes constitute the basis for the sense of smell and are encoded by the largest mammalian gene superfamily of >1,000 genes. In humans, >60% of these are pseudogenes. In contrast, the mouse OR repertoire, although of roughly equal size, contains only approximately 20% pseudogenes. We asked whether the high fraction of nonfunctional(More)
Availability of complete genome sequences allows in-depth comparison of single-residue and oligopeptide compositions of the corresponding proteomes. We have used principal component analysis (PCA) to study the landscape of compositional motifs across more than 70 genera from all three superkingdoms. Unexpectedly, the first two principal components clearly(More)
Olfactory receptors (ORs) are a large family of proteins involved in the recognition and discrimination of numerous odorants. These receptors belong to the G-protein coupled receptor (GPCR) hyperfamily, for which little structural data are available. In this study we predict the binding site residues of OR proteins by analyzing a set of 1441 OR protein(More)
BACKGROUND Olfactory receptors (ORs) are the largest gene family in mammalian genomes. Since nearly all OR genes are orphan receptors, inference of functional similarity or differences between odorant receptors typically relies on sequence comparisons. Based on the alignment of entire coding region sequence, OR genes are classified into families and(More)
Am ajor challenge in comparative genomics is to understand how phenotypic differences between species are encoded in their genomes. Phenotypic divergence may result from differential transcription of orthologous genes, yet less is known about the involvement of differential translation regulation in species phenotypic divergence. In order to assess(More)
Phenotypic differences between closely-related species may arise from differential expression regimes, rather than different gene complements. Knowledge of cellular protein levels across a species sample would thus be useful for the inference of the genes underlying such phenotypic differences. dos Reis et al [1] recently proposed the tRNA Adaptation Index(More)
  • 1