Learn More
Mutation in the TSC2 tumor suppressor causes tuberous sclerosis complex, a disease characterized by hamartoma formation in multiple tissues. TSC2 inhibits cell growth by acting as a GTPase-activating protein toward Rheb, thereby inhibiting mTOR, a central controller of cell growth. Here, we show that Wnt activates mTOR via inhibiting GSK3 without involving(More)
BACKGROUND In response to varied cell stress signals, the p53 tumor-suppressor protein activates a multitude of genes encoding proteins with functions in cell-cycle control, DNA repair, senescence, and apoptosis. The role of p53 in transcription of other types of RNAs, such as microRNAs (miRNAs) is essentially unknown. RESULTS Using gene-expression(More)
The mammalian target of rapamycin (mTOR) promotes anabolic cellular processes in response to growth factors and metabolic cues. The TSC1 and TSC2 tumor suppressors are major upstream inhibitory regulators of mTOR signaling. Mice with Rip2/Cre-mediated deletion of Tsc1 (Rip-Tsc1cKO mice) developed hyperphagia and obesity, suggesting that hypothalamic(More)
The transforming growth factor-β (TGF-β) signalling pathway is a key mediator of fibroblast activation that drives the aberrant synthesis of extracellular matrix in fibrotic diseases. Here we demonstrate a novel link between transforming growth factor-β and the canonical Wnt pathway. TGF-β stimulates canonical Wnt signalling in a p38-dependent manner by(More)
Aberrant activation of the Wnt/beta-catenin signaling pathway is associated with numerous human cancers and often correlates with the overexpression or amplification of the c-myc oncogene. Paradoxical to the cellular transformation potential of c-Myc is its ability to also induce apoptosis. Using an inducible c-MycER expression system, we found that(More)
The balance of contradictory signals experienced by preadipocytes influences whether these cells undergo adipogenesis. In addition to the endocrine system, these signals originate from the preadipocytes themselves or operate as part of a feedback loop involving mature adipocytes. The factors that regulate adipogenesis either promote or block the cascade of(More)
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA), associates with PPARγ and(More)
UNLABELLED Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b(More)
The phosphorylation state of transcription factors is a critical determinant of their function. C/EBPbeta occurs in cells as the transcriptional activator liver-enriched activating protein (LAP) and in the truncated form liver-enriched inhibitory protein (LIP) that inhibits transcription. Analysis of C/EBPbeta phosphorylation by isoelectric focusing (IEF)(More)
Marrow adipose tissue (MAT) accumulates in diverse clinical conditions but remains poorly understood. Here we show region-specific variation in MAT adipocyte development, regulation, size, lipid composition, gene expression and genetic determinants. Early MAT formation in mice is conserved, whereas later development is strain dependent. Proximal, but not(More)