Learn More
Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in(More)
Lissencephaly (agyria-pachygyria) is a human brain malformation manifested by a smooth cerebral surface and abnormal neuronal migration. Identification of the gene(s) involved in this disorder would facilitate molecular dissection of normal events in brain development. Type 1 lissencephaly occurs either as an isolated abnormality or in association with(More)
Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading(More)
CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal),(More)
Mutations in the X-linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts(More)
Important clues to how the mammalian cerebral cortex develops are provided by the analysis of genetic diseases that cause cortical malformations [1-5]. People with Miller-Dieker syndrome (MDS) or isolated lissencephaly sequence (ILS) have a hemizygous deletion or mutation in the LIS1 gene [3,6]; both conditions are characterized by a smooth cerebral(More)
We report the sequence of the entire human gene encoding beta-glucocerebrosidase and that of the associated pseudogene. The gene contains 11 exons extending from base pair 355 to base pair 7232 in the overall sequence. The gene promoter contains TATA- and CAT-like boxes upstream of the major 5' end of the glucocerebrosidase RNA. The two TATA boxes lie(More)
Deletions of the PAFAH1B1 gene (encoding LIS1) in 17p13.3 result in isolated lissencephaly sequence, and extended deletions including the YWHAE gene (encoding 14-3-3epsilon) cause Miller-Dieker syndrome. We identified seven unrelated individuals with submicroscopic duplication in 17p13.3 involving the PAFAH1B1 and/or YWHAE genes, and using a 'reverse(More)
OBJECTIVE We review the clinical phenotype, pathological changes, and results of cytogenetic and molecular genetic studies in 90 probands with lissencephaly (smooth brain) with emphasis on patients with the classical form (type I). We also describe the recent discovery of the lissencephaly gene (LIS1), deletions of which have been implicated as the cause of(More)
X-linked lissencephaly is a severe brain malformation affecting males. Recently it has been demonstrated that the doublecortin gene is implicated in this disorder. In order to study the function of Doublecortin, we analyzed the protein upon transfection of COS cells. Doublecortin was found to bind to the microtubule cytoskeleton. In vitro assays (using(More)