Learn More
A two-microphone transfer function (TMTF) method is adapted to a numerical framework to compute the radiation and input impedances of three-dimensional vocal tracts of elliptical cross-section. In its simplest version, the TMTF method only requires measuring the acoustic pressure at two points in an impedance duct and the postprocessing of the corresponding(More)
Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e.,(More)
In this paper, a multimodal theory accounting for higher order acoustical propagation modes is presented as an extension to the classical plane wave theory. This theoretical development is validated against experiments on vocal tract replicas, obtained using a 3D printer and finite element simulations. Simplified vocal tract geometries of increasing(More)
One of the key effects to model in voice production is that of acoustic radiation of sound waves emanating from the mouth. The use of three-dimensional numerical simulations allows to naturally account for it, as well as to consider all geometrical head details, by extending the computational domain out of the vocal tract. Despite this advantage, many(More)
Parametric loudspeakers are often used in beam forming applications where a high directivity is required. Withal, in this paper it is proposed to use such devices to build an omnidirectional source of sound. An initial prototype, the omnidirectional parametric loudspeaker (OPL), consisting of a sphere with hundreds of ultrasonic transducers placed on it has(More)
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of(More)
Three-dimensional (3-D) numerical approaches for voice production are currently being investigated and developed. Radiation losses produced when sound waves emanate from the mouth aperture are one of the key aspects to be modeled. When doing so, the lips are usually removed from the vocal tract geometry in order to impose a radiation impedance on a closed(More)
This manuscript presents some recent results on directivity control and efficiency of parametric loudspeakers utilizing horns. Horns act both like an acoustic transformer and a directivity control method. An experimental device has been built and measurements have revealed that the horn has a clear influence on the audible sound levels and directivity of(More)