Oriol Güell

Learn More
We unravel how functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks. We perform an exhaustive computational screening of synthetic lethal reaction pairs in Escherichia coli in a minimal medium and we find that synthetic lethal pairs divide in two different groups depending on whether the(More)
We study the propulsion of a micron-size paramagnetic colloidal doublet dispersed in water and driven above a surface by an external precessing magnetic field. The applied field forces the doublet to precess around an axis parallel to the plane of motion and the rotation of the colloidal assembly is rectified into translation due to a periodic asymmetry in(More)
Spherical microspheres are widely employed for the most disparate purposes, such us to assemble three-dimensional structures, [ 1 ] to realize photonic band-gap materials, [ 2 ] porous membranes, [ 3 ] or to transport and release chemicals. [ 4 ] During standard growth processes, colloidal particles acquire a spherical shape since the latter minimizes the(More)
Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network(More)
Experimental and empirical observations on cell metabolism cannot be understood as a whole without their integration into a consistent systematic framework. However, the characterization of metabolic flux phenotypes is typically reduced to the study of a single optimal state, such as maximum biomass yield that is by far the most common assumption. Here, we(More)
The heterogeneity of computationally predicted reaction fluxes in metabolic networks within a single flux state can be exploited to detect their significant flux backbone. Here, we disclose the backbone of Escherichia coli, and compare it with the backbones of other bacteria. We find that, in general, the core of the backbones is mainly composed of(More)
  • 1