Orin B Mock

Learn More
Cortical organization was examined in five shrew species. In three species, Blarina brevicauda, Cryptotis parva, and Sorex palustris, microelectrode recordings were made in cortex to determine the organization of sensory areas. Cortical recordings were then related to flattened sections of cortex processed for cytochrome oxidase or myelin to reveal(More)
Our initial studies suggested that the 5-HT2/1C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane [(+/-)-DOI] produces both the head-twitch response (HTR) and the ear-scratch response (ESR) in mice via stimulation of 5-HT2 receptors. However, challenge studies revealed that these behaviors are produced via two different receptors (possibly 5-HT2(More)
Studies of morphological integration can provide insight into developmental patterns, even in extinct taxa known only from skeletal remains, thus making them an important tool for studies of evolutionary development. However, interpreting patterns of integration and assessing their significance for organismal evolution requires detailed understanding of the(More)
We analyzed a comprehensive data set of ossification sequences including seven marsupial, 13 placental and seven sauropsid species. Data are provided for the first time for two major mammalian clades, Chiroptera and Soricidae, and for two rodent species; the published sequences of three species were improved with additional sampling. The relative timing of(More)
Timing of organ development during embryogenesis is coordinated such that at birth, organ and fetal size and maturity are appropriately proportioned. The extent to which local developmental timers are integrated with each other and with the signaling interactions that regulate morphogenesis to achieve this end is not understood. Using the absolute(More)
In the order Lipotyphla (Insectivora), certain reproductive features differ quite distinctly from the eutherian norms, and are of interest with regard to the evolution of mammalian gamete function and perhaps for questions of lipotyphlan phylogeny. As seen in one or more members of five lipotyphlan families (shrews, moles, hedgehogs, golden moles, tenrecs),(More)
  • 1