Ori D. Fox

  • Citations Per Year
Learn More
Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of(More)
The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants(More)
We have obtained early-time photometry and spectroscopy of Supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni (. 0.06M⊙) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on(More)
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100Å(More)
We conducted Hubble Space Telescope (HST) Snapshot observations of the Type IIb Supernova (SN) 2011dh in M51 at an age of ∼ 641 days with the Wide Field Camera 3. We find that the yellow supergiant star, clearly detected in pre-SN HST images, has disappeared, implying that this star was almost certainly the progenitor of the SN. Interpretation of the(More)
Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, yet the nature and physical properties of their energy sources are far from understood.Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, RATIR,(More)
SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>1051 erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic(More)
We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space(More)
A long-standing paradigm in astrophysics is that collisions-or mergers-of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration. The observational support for this model, however, is only indirect. A hitherto outstanding prediction is that gravitational-wave events from(More)
Near-infrared photometric observations of the Type IIn SN 2005ip in NGC 2906 reveal large fluxes (>1.3 mJy) in the Ks-band over more than 900 days. While warm dust can explain the late-time Ks-band emission of SN 2005ip, the nature of the dust heating source is ambiguous. Shock heating of pre-existing dust by post-shocked gas is unlikely because the forward(More)