Oren Eliezer

Learn More
We present the first 90-nm digital CMOS RF power amplifier. This PA contains a large array of NMOS switches, and performs a direct digital-to-RF-amplitude conversion, filtering and buffering in a fully-integrated GSM/EDGE transmitter. Power control is fully digital. 40% efficiency is obtained at 10-dBm output power from 1.4 V and it occupies 0.005 mm/sup 2/.
We present a novel approach for built-in self-testing (BIST) of an RF wireless transmitter. This approach, based on fully-digital hardware and on software algorithms, allows the testing of the transmitter's analog/RF circuitry while providing low-cost replacements for the costly traditional RF tests. The testing approach is structural in nature and(More)
A new linearization scheme is proposed, which compensates for nonlinear distortions experienced in the amplitudemodulation path of a digital polar EDGE transmitter integrated in a 65-nm CMOS transceiver system-on-chip (SoC) based on the Digital RF Processor (DRP) technology. The measured amplitude and phase distortions are stored in lookup tables and used(More)
This paper proposes and describes a new software and application programming interface view of an RF transceiver. It demonstrates benefits of using highly programmable digital control logic in an RF wireless system realized in a digital nanoscale CMOS process technology. It also describes a microprocessor architecture design in Digital RF Processor (DRPTM)(More)
We propose a new multirate architecture of an all-digital PLL (ADPLL) featuring phase/frequency modulation capability. While the ADPLL approach has already proven its benefits of power dissipation and cost reduction through the discrete-time operation and full RF-SoC integration in nanoscale CMOS, the coarse discretization of the phase detector function(More)
EDGE is currently the most widely used standard for data communications in mobile phones. Its proliferation has led to a need for low-cost 2.5G mobile solutions. The implementation of RF circuits in nanoscale digital CMOS with no or minimal process enhancements is one of the key obstacles limiting the complete SoC integration of cellular radio functionality(More)
The WWVB broadcast of the time-code signal has undergone no major changes in its communications protocol and modulation scheme since its introduction in 1963. Its amplitude-modulation (AM) and pulse-width based representations of its digital symbols were designed to allow for a simple low-cost realization of a receiver based on envelope detection, widely(More)