Learn More
The ability to generate patient-specific human induced pluripotent stem cells (iPSCs) offers a new paradigm for modelling human disease and for individualizing drug testing. Congenital long QT syndrome (LQTS) is a familial arrhythmogenic syndrome characterized by abnormal ion channel function and sudden cardiac death. Here we report the development of a(More)
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial(More)
OBJECTIVES We evaluated the ability of human embryonic stem cells (hESCs) and their cardiomyocyte derivatives (hESC-CMs) to engraft and improve myocardial performance in the rat chronic infarction model. BACKGROUND Cell therapy is emerging as a novel therapy for myocardial repair but is hampered by the lack of sources for human cardiomyocytes. METHODS(More)
Myocardial regeneration strategies have been hampered by the lack of sources for human cardiomyocytes (CMs) and by the significant donor cell loss following transplantation. We assessed the ability of a three-dimensional tissue-engineered human vascularized cardiac muscle to engraft in the in vivo rat heart and to promote functional vascularization. Human(More)
Human embryonic stem cells (hESC) are pluripotent lines that can differentiate in vitro into cell derivatives of all three germ layers, including cardiomyocytes. Successful application of these unique cells in the areas of cardiovascular research and regenerative medicine has been hampered by difficulties in identifying and selecting specific cardiac(More)
OBJECTIVES The goal of this study was to establish a patient-specific human-induced pluripotent stem cells (hiPSCs) model of catecholaminergic polymorphic ventricular tachycardia (CPVT). BACKGROUND CPVT is a familial arrhythmogenic syndrome characterized by abnormal calcium (Ca(2+)) handling, ventricular arrhythmias, and sudden cardiac death. METHODS(More)
Transplantation of a tissue-engineered heart muscle represents a novel experimental therapeutic paradigm for myocardial diseases. However, this strategy has been hampered by the lack of sources for human cardiomyocytes and by the scarce vasculature in the ischemic area limiting the engraftment and survival of the transplanted muscle. Beyond the necessity of(More)
BACKGROUND The ability to derive human induced pluripotent stem (hiPS) cell lines by reprogramming of adult fibroblasts with a set of transcription factors offers unique opportunities for basic and translational cardiovascular research. In the present study, we aimed to characterize the cardiomyocyte differentiation potential of hiPS cells and to study the(More)
Pro-arrhythmia (development of cardiac arrhythmias as a pharmacological side effect) has become the single most common cause of the withdrawal or restrictions of previously marketed drugs. The development of new medications, free from these side effects, is hampered by the lack of an in vitro assay for human cardiac tissue. We hypothesized that human(More)
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a primary heart muscle disorder resulting from desmosomal protein mutations. ARVC is characterized pathologically by fibrofatty infiltration and clinically by arrhythmias and sudden cardiac death. We aimed to establish a patient-/disease-specific human induced pluripotent stem cell (hiPSC)(More)