Learn More
We present an anisotropic adaptive discretization method and demonstrate how computational efficiency can be increased when applying it to the simulation of cardiovascular flow. We further propose a new adaptive approach which controls the mesh adaptation procedure to maintain structured and graded elements near the wall resulting in a more accurate wall(More)
In this study, we present an adaptive anisotropic finite element method (FEM) and demonstrate how computational efficiency can be increased when applying the method to the simulation of blood flow in the cardiovascular system. We use the SUPG formulation for the transient 3D incompressible Navier-Stokes equations which are discretised by linear finite(More)
Implicit methods for partial differential equations using unstructured meshes allow for an efficient solution strategy for many real-world problems (e.g., simulation-based virtual surgical planning). Scalable solvers employing these methods not only enable solution of extremely-large practical problems but also lead to dramatic compression in(More)
A procedure for anisotropic mesh adaptation accounting for mixed element types and boundary layer meshes is presented. The method allows to automatically construct meshes on domains of interest to accurately and efficiently compute key flow quantities, especially near wall quantities like wall shear stress. The new adaptive approach uses local mesh(More)
We present an automatic adaptive procedure to perform blood flow simulations in the cardiovascular system. The procedure allows the user to start with subject-specific data collected through clinical measurements, like magnetic resonance imaging (MRI) data, and evaluate physiological parameters of interest, like flow distribution, pressure variations, wall(More)
Parallel simulations at extreme scale require that the mesh is distributed across a large number of processors with equal work load and minimum inter-part communications. A number of algorithms have been developed to meet these goals and graph/hypergraph-based methods are by far the most powerful ones. However, the global implementation of current(More)
The scalable execution of parallel adaptive analyses requires the application of dynamic load balancing to repartition the mesh into a set of parts with balanced work load and minimal communication. As the adaptive meshes being generated reach billions of elements and the analyses are performed on massively parallel computers with 100,000’s of computing(More)
With the development of high-performance computing, I/O issues have become the bottleneck for many massively parallel applications. This paper investigates scalable parallel I/O alternatives for massively parallel partitioned solver systems. Typically such systems have synchronized “loops” and will write data in a well defined block I/O format(More)
This paper introduces a general-purpose communication package built on top of MPI which is aimed at improving inter-processor communications independently of the supercomputer architecture being considered. The package is developed to support parallel applications that rely on computation characterized by large number of messages of various sizes, often(More)