Learn More
The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly desirable properties: the set is closed under 1. continuous (and(More)
In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from(More)
The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by text retrieval. A key component of these approaches is that local regions of images are characterized using high-dimensional descriptors which are then mapped to ldquovisual wordsrdquo selected from a discrete vocabulary.This paper explores(More)
A new robust matching method is proposed. The progressive sample consensus (PROSAC) algorithm exploits the linear ordering defined on the set of correspondences by a similarity function used in establishing tentative correspondences. Unlike RANSAC, which treats all correspondences equally and draws random samples uniformly from the full set, PROSAC samples(More)
Given a query image of an object, our objective is to retrieve all instances of that object in a large (1M+) image database. We adopt the bag-of-visual-words architecture which has proven successful in achieving high precision at low recall. Unfortunately, feature detection and quantization are noisy processes and this can result in variation in the(More)
A new enhancement of RANSAC, the locally optimized RANSAC (LO-RANSAC), is introduced. It has been observed that, to find an optimal solution (with a given probability), the number of samples drawn in RANSAC is significantly higher than predicted from the mathematical model. This is due to the incorrect assumption, that a model with parameters computed from(More)
State of the art methods for image and object retrieval exploit both appearance (via visual words) and local geometry (spatial extent, relative pose). In large scale problems, memory becomes a limiting factor - local geometry is stored for each feature detected in each image and requires storage larger than the inverted file and term frequency and inverted(More)
We introduce an exemplar model that can learn and generate a region of interest around class instances in a training set, given only a set of images containing the visual class. The model is scale and translation invariant. In the training phase, image regions that optimize an objective function are automatically located in the training images, without(More)
Many computer vision algorithms include a robust estimation step where model parameters are computed from a data set containing a significant proportion of outliers. The RANSAC algorithm is possibly the most widely used robust estimator in the field of computer vision. In the paper we show that under a broad range of conditions, RANSAC efficiency is(More)
Convolutional Neural Networks (CNNs) achieve state-of-the-art performance in many computer vision tasks. However, this achievement is preceded by extreme manual annotation in order to perform either training from scratch or fine-tuning for the target task. In this work, we propose to fine-tune CNN for image retrieval from a large collection of unordered(More)