Learn More
We present here three-dimensional time-wavelength-intensity displays of changes in variable fluorescence, during the O(JI)PSMT transient, observed in cyanobacterium at room temperature. We were able to measure contributions of individual chromophores to fluorescence spectra at various times of fluorescence induction (FI). The method was applied to a(More)
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO(2) partial pressure (pCO(2)) enhances N(2) fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO(2), its modification by other environmental factors, and underlying processes causing these responses. To(More)
The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO(2) partial pressure (pCO(2)) with higher N(2) fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO(2) (150 and 900 microatm) and light (50 and 200 micromol photons m(-2) s(-1)) on Trichodesmium IMS101. We expand on a(More)
Chromera velia (Alveolata) is a close relative to apicomplexan parasites with a functional photosynthetic plastid. Even though C. velia has a primitive complement of pigments (lacks chlorophyll c) and uses an ancient type II form of RuBISCO, we found that its photosynthesis is very efficient with the ability to acclimate to a wide range of irradiances. C.(More)
Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the(More)
In dark-adapted plants and algae, chlorophyll a fluorescence induction peaks within 1s after irradiation due to well documented photochemical and non-photochemical processes. Here we show that the much slower fluorescence rise in cyanobacteria (the so-called "S to M rise" in tens of seconds) is due to state 2 to state 1 transition. This has been(More)
Elevated temperatures in combination with moderate to high irradiance are known to cause bleaching events in scleractinian corals, characterised by damage to photosystem II (PSII). Photoprotective mechanisms of the symbiont can reduce the excitation pressure impinging upon PSII. In the bleaching sensitive species, Acropora millepora and Pocillopora(More)
The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core(More)
Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which(More)
The Q B binding site of the D1 reaction center protein, located within a stromal loop between transmembrane helices IV and V formed by residues Ile 219 to Leu 272 , is essential for photosynthetic electron transport through photosystem II (PSII). We have examined the function of the highly conserved Ala 251 D1 residue in this domain in chloroplast(More)