Omolola Eniola-Adefeso

Learn More
Targeting of drug carriers to the vascular wall is of interest for localized delivery of therapeutics in many human diseases. Nanometer-sized spherical particles are widely proposed for use as carriers for vascular targeting, yet very little evidence has been presented as to their ability to interact with the vascular wall. Thus, this work focuses on(More)
Many variants of vascular-targeted carriers (VTCs) have been investigated for therapeutic intervention in several human diseases. However, in order to optimize the functionality of VTC in vivo, carriers' physical properties, such as size and shape, are important considerations for a VTC design that evades the reticuloendothelial system (RES) and(More)
OBJECTIVE Vascular-targeted imaging and drug delivery systems are promising for the treatment of atherosclerosis due to the vast involvement of endothelium in the initiation and growth of plaque. Herein, we investigated the role of particle size in dictating the ability of vascular-targeted spherical particles to interact with the vascular wall (VW) from(More)
The outcome of vascular-targeted therapies is generally determined by how efficiently vascular-targeted carriers localize and adhere to the endothelial wall at the targeted site. This study investigates the impact of leukocytes, platelets and red blood cells on the margination of vascular-targeted polymeric nanospheres and microspheres under various(More)
Particle shape is becoming increasingly recognized as an important parameter for the development of vascular-targeted carriers (VTCs) for disease treatment and diagnosis. However, limited research exists that investigates how particle shape coupled with hemodynamics affects VTC margination (localization and adhesion). In this study, we investigate the(More)
OBJECTIVE Vascular-targeting remains a promising strategy for improving the diagnosis and treatment of coronary artery disease (CAD) by providing localized delivery of imaging and therapeutic agents to atherosclerotic lesions. In this work we evaluate how size and shape affects the capacity for a vascular-targeted carrier system to bind inflamed endothelial(More)
Non-spherical particles may offer advantages over conventional spherical systems for drug delivery applications. This work describes the fabrication of agent-loaded poly(lactic-co-glycolic acid) (PLGA) spheroids via the emulsion solvent evaporation (ESE) method. The versatility of this technique for loading a variety of therapeutics is demonstrated via(More)
For vascular-targeting carrier (VTC) systems to be effective, carriers must be able to localize and adhere to the vascular wall at the target site. Research suggests that neutrally buoyant nanoparticles are limited by their inability to localize to the endothelium, making them sub-optimal as carriers. This study examines whether particle density can be(More)
BACKGROUND Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated. METHODOLOGY We investigated EC response to long-term(More)
Vascular-targeted drug delivery systems could provide more efficient and effective pharmaceutical interventions for treating a variety of diseases including cardiovascular, pulmonary, inflammatory, and malignant disorders. However, several factors must be taken into account when designing these systems. The diverse blood hemodynamics and rheology, and the(More)