Omkar Dandekar

Learn More
Minimally invasive image-guided interventions (IGIs) are time and cost efficient, minimize unintended damage to healthy tissue, and lead to faster patient recovery. With the advent of multislice computed tomography (CT), many IGIs are now being performed under volumetric CT guidance. Registering pre-and intraprocedural images for improved intraprocedural(More)
—For the past decade, improving the performance and accuracy of medical image registration has been a driving force of innovation in medical imaging. The ultimate goal of accurate, robust, real-time image registration will enhance diagnoses of patients and enable new image-guided intervention techniques. With such a computationally intensive and(More)
This work discusses an approach to utilize hierarchical multiprocessing in the context of medical image registration. By first organizing application parallelism into a domain-specific taxonomy, an algorithm is structured to target a set of multicore platforms.The approach on a cluster of graphics processing units (GPUs) requiring the use of two parallel(More)
BACKGROUND Current laparoscopic images are rich in surface detail but lack information on deeper structures. This report presents a novel method for highlighting these structures during laparoscopic surgery using continuous multislice computed tomography (CT). This has resulted in a more accurate augmented reality (AR) approach, termed "live AR," which(More)
Image-guided interventions are known to lead to improved outcomes and significantly faster patient recovery as compared with conventional open, invasive procedures. Common intraoperative imaging techniques such as endoscopy and fluoroscopy are two-dimensional (2D), and provide a 2D representation of the 3D anatomy. Use of recently emerged multislice(More)
With a multitude of technological innovations, one emerging trend in image processing, and medical image processing, in particular, is custom hardware implementation of computationally intensive algorithms in the quest to achieve real-time performance. For reasons of area-efficiency and performance, these implementations often employ limited-precision(More)
Ultrasound is a noninvasive and less costly modality for real-time imaging of soft tissues. It has the capability of tracking soft tissue at levels of submillimeter precision even in the presence of radiation beams. The effect of a transducer on radiation dose is not fully known. The best imaging location for an ultrasound transducer happens to coincide(More)
This study evaluates the accuracy of augmenting initial intraprocedural computed tomography (CT) during radiofrequency ablation (RFA) of hepatic metastases with preprocedural positron emission tomography (PET) through a hardware-accelerated implementation of an automatic nonrigid PET-CT registration algorithm. The feasibility of augmenting intraprocedural(More)
  • 1