Learn More
In this paper, an ANFIS (adaptive neuro-fuzzy inference system) based autonomous flight controller for UAVs (unmanned aerial vehicles) is described. To control the position of the UAV in three dimensional space as altitude and longitude–latitude location, three fuzzy logic modules are developed. These adjust the pitch angle, the roll angle and the throttle(More)
This paper proposes a fuzzy logic based autonomous navigation controller for UAVs (unmanned aerial vehicles). Three fuzzy logic modules are developed under the main navigation system for the control of the altitude, the speed, and the heading, through which the global position (latitude–longitude) of the air vehicle is controlled. A SID (Standard Instrument(More)
As a result of unmanned aerial vehicles being widely used in different areas, studies about increasing the autonomous capabilities of unmanned aerial vehicles are gaining momentum. Today, unmanned aerial vehicle platforms are especially used in reconnaissance, surveillance and communications areas. In this study, in order to achieve continuous long-range(More)
This paper is concerned with autonomous flight of UAVs and proposes a fuzzy logic based autonomous flight and landing system controller. Besides three fuzzy logic controllers which are developed for autonomous navigation for UAVs in a previous work as fuzzy logic based autonomous mission control blocks, three more fuzzy logic modules are developed under the(More)
In this study, a hardware prototype that has an inertial measurement unit including an accelerometer and a gyroscope with the ability to record sensor readings is developed. Using the prototype on the training weapons, gyroscope and accelerometer readings were recorded, during gunshots as well as other movements namely, shocks, shaking and random movements.(More)