Ombeline de La Rochefoucauld

Learn More
It was shown that the mode of vibration of the stapes has a predominant piston component but rotations producing tilt of the footplate are also present. Tilt and piston components vary with frequency. Separately it was shown that the pressure gain between ear canal and scala vestibuli was a remarkably flat and smooth function of frequency. Is tilt(More)
Based on comparisons of ear canal and scala vestibuli pressures the gerbil middle ear transmits sound with a gain of approximately 25 dB that is almost flat from 2 to 40 kHz, and with a delay-like phase corresponding to a 25-30 micros delay. How the middle ear is able to transmit sound with such high temporal and amplitude fidelity is not known, and is(More)
The middle ear transmits sound efficiently from the air in the ear canal (EC) to the fluid filled cochlea. In gerbil, middle ear transmission produces a constant pressure gain between the EC and the cochlea of ∼25 dB from 2 to 40 kHz, and a delay-like phase corresponding to a ∼25-30 μs delay. The mechanisms by which the air-born signal is collected and(More)
A common way to measure submicroscopic motion of the organ of Corti is heterodyne interferometry. The depth over which vibration can be accurately measured with heterodyne interferometry is determined by both the optics, which controls to what extent light from nonfocal planes reaches the photodetectors, and demodulation electronics, which determines to(More)
The mechanism for passive cochlear tuning remains unsettled. Early models considered the organ of Corti complex (OCC) as a succession of spring-mass resonators. Later, traveling wave models showed that passive tuning could arise through the interaction of cochlear fluid mass and OCC stiffness without local resonators. However, including enough OCC mass to(More)
  • 1