Learn More
The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif(More)
BACKGROUND Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high(More)
Benznidazole is the frontline drug used against Trypanosoma cruzi, the causative agent of Chagas disease. However, treatment failures are often reported. Here, we demonstrate that independently acquired mutations in the gene encoding a mitochondrial nitroreductase (TcNTR) can give rise to distinct drug-resistant clones within a single population. Following(More)
A low-stringency single-primer polymerase chain reaction (LSSP-PCR) typing procedure targeted to the intergenic regions of spliced-leader genes (SL) was designed to profile Trypanosoma cruzi I stocks from endemic regions of Colombia. Comparison between SL-LSSP-PCR profiles of parasite DNA from vector faeces and cultures isolated from those faeces showed(More)
In Colombia, high genetic variability has been found among Trypanosoma cruzi stocks isolated from different vector and host species, using isoenzyme analysis and RFLP of total kinetoplastid DNA (kDNA), suggesting that several genetically related T. cruzi populations might be present within a single geographical area or adjacent ones. The objective of this(More)
The causes of the particular distribution of both Trypanosoma cruzi lineages throughout the American continent remain unknown. In Colombia, T. cruzi I is the predominant group in both domestic and sylvatic cycles. Here, we present the biological characterization of T. cruzi parasites belonging to both T. cruzi I and T. cruzi IIb groups. Our results show the(More)
This study attempted to evaluate the transmission dynamics of Trypanosoma cruzi in four indigenous communities of Sierra Nevada de Santa Marta (SNSM), Colombia. Low-stringency single primer-polymerase chain reaction (LSSP-PCR) of the minicircles and Southern blot analyses were used to characterize samples from patients, vectors, and reservoirs in these(More)
Spliced leader intergenic region (SL-IR) sequences from 23 Trypanosoma rangeli strains isolated from the salivary glands of Rhodnius colombiensis, R. ecuadoriensis, R. pallescens and R. prolixus and two human strains revealed the existence of 4 genotypes with CA, GT, TA, ATT and GTAT microsatellite repeats and the presence of insertions/deletions (INDEL)(More)
Chagas disease is a neglected illness, with limited treatments, caused by the parasite Trypanosoma cruzi. Two drugs are prescribed to treat the disease, nifurtimox and benznidazole, which have been previously reported to have limited efficacy and the appearance of resistance by T. cruzi. Acquisition of drug-resistant phenotypes is a complex physiological(More)
Methods to determine blood-meal sources of hematophagous Triatominae bugs (Chagas disease vectors) are serological or based on PCR employing species-specific primers or heteroduplex analysis, but these are expensive, inaccurate, or problematic when the insect has fed on more than one species. To solve those problems, we developed a technique based on HRM(More)