Learn More
Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects(More)
CONTEXT Both bone mineral density (BMD) and fracture risk have a strong genetic component. Estrogen receptor alpha (ESR1) is a candidate gene for osteoporosis, but previous studies of ESR1 polymorphisms in this field were hampered by small sample size, lack of standardization, and inconclusive results. OBJECTIVE To generate large-scale evidence on whether(More)
The contribution of genetic polymorphisms to bone mineral density (BMD) and fracture risk in women is a controversial topic. We evaluated the effect of the XbaI and PvuII polymorphisms of the estrogen receptor a to BMD and fracture risk in a meta-analysis, including published data and additional information from investigators. Five thousand eight hundred(More)
CONTEXT The COLIA1 gene is a strong candidate for susceptibility to osteoporosis. The causal genetic variants are currently unclear, but the most likely are functional polymorphisms in the promoter and intron 1 of COLIA1. OBJECTIVE The objective of the study was to determine whether promoter and intron 1 polymorphisms of COLIA1 or haplotypes defined by(More)
Over the past 10 years, many advances have been made in understanding the mechanisms by which genetic factors regulate susceptibility to osteoporosis. It has become clear from studies in man and experimental animals that different genes regulate BMD at different skeletal sites and in men and women. Linkage studies have identified several chromosomal regions(More)
Hypophosphatemic rickets (HR) is a group of rare disorders caused by excessive renal phosphate wasting. The purpose of this cross-sectional study of 38 HR patients was to characterize the phenotype of adult HR patients. Moreover, skeletal and endodontic severity scores were defined to assess possible gender differences in disease severity in patients with(More)
Osteoporosis is a multifactorial disease with a strong genetic component characterized by reduced bone density and increased fracture risk. A candidate locus for regulation of hip bone mineral density (BMD) has been identified on chromosome 1p36 by linkage analysis. One of the positional and functional candidate genes located within this region is the(More)
Paget's disease is a common skeletal disorder with a strong genetic component, which is characterized by focal increases in disorganized bone remodeling, predominantly affecting the axial skeleton. Current evidence suggests that classical Paget's disease of bone (PDB) is caused by a combination of rare alleles of large effect size that cause autosomal(More)
Three polymorphisms (-1997G/T; -1663IndelT and +1245G/T) have been identified in the 5' flank of COL1A1 gene that are associated with osteoporosis but the underlying mechanism is unclear. Here we investigated the functional effects of these variants on COL1A1 transcription. Transcription was 2-fold higher with the osteoporosis-associated G-del-T haplotype(More)
Osteoporosis is a common disease with a strong genetic component, characterized by reduced bone mass and an increased risk of fracture. Bone mineral density (BMD) is a highly heritable trait and a key determinant of osteoporotic fracture risk, but the genes responsible are incompletely defined. Here, we identified quantitative trait loci (QTL) for(More)