Learn More
After a sequence of improvements Boyd, Sitters, van der Ster, and Stougie proved that any 2-connected graph whose n vertices have degree 3, i.e., a cubic 2-connected graph, has a Hamiltonian tour of length at most (4/3)n, establishing in particular that the integrality gap of the subtour LP is at most 4/3 for cubic 2-connected graphs and matching the(More)
Network flows that vary over time arise naturally when modeling rapidly evolving systems such as the Internet. In this paper, we continue the study of equilibria for flows over time in the single-source single-sink deterministic queuing model proposed by Koch and Skutella. We give a constructive proof for the existence and uniqueness of equilibria for the(More)
Flows over time provide a natural and convenient description for the dynamics of a continuous stream of particles traveling from a source to a sink in a network, allowing to track the progress of each infinitesimal particle along time. A basic model for the propagation of flow is the so-called fluid queue model in which the time to traverse an edge is(More)
  • 1