Omar K Farha

Learn More
1. INTRODUCTION Among the classes of highly porous materials, metalÀorganic frameworks (MOFs) are unparalleled in their degree of tunability and structural diversity as well as their range of chemical and physical properties. MOFs are extended crystalline structures wherein metal cations or clusters of cations (" nodes ") are connected by multitopic organic(More)
Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection(More)
On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are(More)
Through the use of the tetratopic ligand 1,2,4,5-tetrakis(4-carboxyphenyl)benzene as a key building block, a permanently microporous metal-organic framework with Lewis acidic (porphyrin)Zn struts, ZnPO-MOF, can be made in high yields. ZnPO-MOF can efficiently catalyze acyl-transfer reactions primarily by preconcentrating the substrates within its pores, in(More)
The emergence of metal-organic frameworks (MOFs) as functional ultrahigh surface area materials is one of the most exciting recent developments in solid-state chemistry. Now constituting thousands of distinct examples, MOFs are an intriguing class of hybrid materials that exist as infinite crystalline lattices with inorganic vertices and molecular-scale(More)
We have examined the methane uptake properties of six of the most promising metal organic framework (MOF) materials: PCN-14, UTSA-20, HKUST-1, Ni-MOF-74 (Ni-CPO-27), NU-111, and NU-125. We discovered that HKUST-1, a material that is commercially available in gram scale, exhibits a room-temperature volumetric methane uptake that exceeds any value reported to(More)
"Breathing" metal-organic frameworks (MOFs) are an emerging class of soft porous crystals (SPCs) with potential for high working capacity for gas storage applications. However, most breathing MOFs have low stability and/or low surface area. Here we report a water-stable, high surface area, breathing MOF of ftw topology, NU-1105. While Zr6-oxo clusters as(More)
Porous heterogeneous catalysts play a pivotal role in the chemical industry. Herein a new Hf-based metal-organic framework (Hf-NU-1000) incorporating Hf6 clusters is reported. It demonstrates high catalytic efficiency for the activation of epoxides, facilitating the quantitative chemical fixation of CO2 into five-membered cyclic carbonates under ambient(More)
The photooxidation of a mustard-gas simulant, 2-chloroethyl ethyl sulfide (CEES), is studied using a porphyrin-based metal-organic framework (MOF) catalyst. At room temperature and neutral pH value, singlet oxygen is generated by PCN-222/MOF-545 using an inexpensive and commercially available light-emitting diode. The singlet oxygen produced by(More)