Olivier Théodoly

Learn More
In biology, the extracellular matrix (ECM) promotes both cell adhesion and specific recognition, which is essential for central developmental processes in both eukaryotes and prokaryotes. However, live studies of the dynamic interactions between cells and the ECM, for example during motility, have been greatly impaired by imaging limitations: mostly the(More)
We present a technique for the directed assembly and self-assembly of micrometer-scale structures based on the control of specific DNA linkages between colloidal particles. The use of DNA links combined with polymer brushes provides an effective way to regulate the range and magnitude of addressable forces between pairs (and further combinations) of(More)
Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape(More)
We report how cell rheology measurements can be performed by monitoring the deformation of a cell in a microfluidic constriction, provided that friction and fluid leaks effects between the cell and the walls of the microchannels are correctly taken into account. Indeed, the mismatch between the rounded shapes of cells and the angular cross-section of(More)
We study the motion of droplets in a confined, micrometric geometry, by focusing on the lubrication film between a droplet and a wall. When capillary forces dominate, the lubrication film thickness evolves nonlinearly with the capillary number due to the viscous dissipation between the meniscus and the wall. However, this film may become thin enough (tens(More)
This article describes a simple and low-tech microfluidic method for single-cell experimentation, which permits cell selection without stress, cell manipulation with fine control, and passive self-exclusion of all undesired super-micronic particles. The method requires only conventional soft lithography microfabrication techniques and is applicable to any(More)
The deformability of circulating leukocytes plays an important role in the physiopathology of several diseases like sepsis or acute respiratory distress syndrome (ARDS). We present here a microfluidic method for the passive testing, sorting and separating of non-adherent cell populations by deformability. It consists of microfluidic sieves in series with(More)
We have developed a new and improved optical model of reflection interference contrast microscopy (RICM) to determine with a precision of a few nanometers the absolute thickness h of thin films on a flat surface in immersed conditions. The model takes into account multiple reflections between a planar surface and a multistratified object, finite aperture(More)
As they leave the blood stream and travel to lymph nodes or sites of inflammation, T lymphocytes are captured by the endothelium and migrate along the vascular wall to permissive sites of transmigration. These processes take place under the influence of hemodynamic shear stress; therefore, we investigated how migrational speed and directionality are(More)
BACKGROUND Leukocyte-mediated pulmonary inflammation is a key pathophysiological mechanism involved in acute respiratory distress syndrome (ARDS). Massive sequestration of leukocytes in the pulmonary microvasculature is a major triggering event of the syndrome. We therefore investigated the potential role of leukocyte stiffness and adhesiveness in the(More)