#### Filter Results:

#### Publication Year

2004

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Method

#### Organism

Learn More

The maintenance of "public" or "common good" producers is a major question in the evolution of cooperation. Because nonproducers benefit from the shared resource without bearing its cost of production, they may proliferate faster than producers. We established a synthetic microbial system consisting of two Escherichia coli strains of common-good producers… (More)

Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between… (More)

A fundamental problem in biology is understanding the evolutionary emergence and maintenance of altruistic behaviors. A well-recognized conceptual insight is provided by a general mathematical relation, Hamilton's rule. This rule can in principle be invoked to explain natural examples of cooperation, but measuring the variables that it involves is a… (More)

Allosteric coupling between protein domains is fundamental to many cellular processes. For example, Hsp70 molecular chaperones use ATP binding by their actin-like N-terminal ATPase domain to control substrate interactions in their C-terminal substrate-binding domain, a reaction that is critical for protein folding in cells. Here, we generalize the… (More)

Studies of coevolution of amino acids within and between proteins have revealed two types of coevolving units: coevolving contacts, which are pairs of amino acids distant along the sequence but in contact in the three-dimensional structure, and sectors, which are larger groups of structurally connected amino acids that underlie the biochemical properties of… (More)

The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit… (More)

Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long-standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check codes on the binary… (More)

We present a theoretical framework for characterizing the geometrical properties of the space of solutions in constraint satisfaction problems, together with practical algorithms for studying this structure on particular instances. We apply our method to the coloring problem, for which we obtain the total number of solutions and analyze in detail the… (More)

The inheritance of characteristics induced by the environment has often been opposed to the theory of evolution by natural selection. However, although evolution by natural selection requires new heritable traits to be produced and transmitted, it does not prescribe, per se, the mechanisms by which this is operated. The mechanisms of inheritance are not,… (More)

- Olivier Rivoire
- 2004

The one-step replica symmetry breaking cavity method is proposed as a new tool to investigate large deviations properties in random graph ensembles. The probabilities of atypical graphs are related to negative complexities, thus explaining the origin of this " unphysical " negativeness. This relationship, illustrated on lattice glass models, is confronted… (More)