Olivier Martineau-Huynh

Learn More
The origin of Galactic cosmic rays (with energies up to 10 15 eV) remains unclear, though it is widely believed that they originate in the shock waves of expanding supernova remnants [1][2]. Currently the best way to investigate their acceleration and propagation is by observing the γ-rays produced when cosmic rays interact with interstellar gas [3]. Here(More)
Aims. We present results from deep observations of the Galactic shell-type supernova remnant (SNR) RX J1713.7−3946 (also known as G347.3−0.5) conducted with the complete H.E.S.S. array in 2004. Methods. Detailed morphological and spatially resolved spectral studies reveal the very-high-energy (VHE – Energies E > 100 GeV) gamma-ray aspects of this object(More)
The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833−45, has been observed by the H.E.S.S. γ-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within(More)
Aims. The BL Lac object RGB J0152+017 (z = 0.080) was predicted to be a very high-energy (VHE; > 100 GeV) γ-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods. We(More)
X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to(More)
The serendipitous discovery of an unidentified extended TeV γ-ray source close to the galactic plane named HESS J1303-631 at a significance of 21 standard deviations is reported. The observations were performed between February and June 2004 with the H.E.S.S. stereoscopic system of Cherenkov telescopes in Namibia. HESS J1303-631 was discovered roughly 0.6 •(More)
In the past few decades, several models have predicted an energy dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this minuscule effect can add up to measurable photon-energy dependent time lags. In this Letter a search for such time lags during the High Energy Stereoscopic System(More)
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central(More)
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we(More)
The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we(More)