Learn More
Explicit high-order numerical schemes are proposed for the accurate computation of multiple-scale problems and for the implementation of boundary conditions. Specific high-order node-centered finite differences and selective filters removing grid-to-grid oscillations are first designed for the discretization of the buffer region between a Dx-grid domain and(More)
The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter(More)
Direct numerical simulations of the two-dimensional unsteady compressible Navier-Stokes equations are performed to study the acoustic field generated by an infrasonic source in a realistic atmosphere. Some of the main phenomena affecting the propagation of infrasonic waves at large distances from the source are investigated. The effects of thermal and(More)
  • 1