Olivier Loudet

Learn More
Natural genetic variation in Arabidopsis is considerable, but has not yet been used extensively as a source of variants to identify new genes of interest. From the cross between two genetically distant ecotypes, Bay-0 and Shahdara, we generated a Recombinant Inbred Line (RIL) population dedicated to Quantitative Trait Locus (QTL) mapping. A set of 38(More)
Quantitative approaches conducted in a single mapping population are limited by the extent of genetic variation distinguishing the parental genotypes. To overcome this limitation and allow a more complete dissection of the genetic architecture of complex traits, we built an integrated set of 15 new large Arabidopsis thaliana recombinant inbred line (RIL)(More)
Improving plant nitrogen (N) use efficiency or controlling soil N requires a better knowledge of the regulation of plant N metabolism. This could be achieved using Arabidopsis as a model genetic system, taking advantage of the natural variation available among ecotypes. Here, we describe an extensive study of N metabolism variation in the Bay-0 x Shahdara(More)
Genetic incompatibilities resulting from interactions between two loci represent a potential source of postzygotic barriers and may be an important factor in evolution when they impair the outcome of interspecific crosses. We show that, in crosses between strains of the plant Arabidopsis thaliana, loci interact epistatically, controlling a recessive embryo(More)
The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene(More)
Besides being a metabolic fuel, carbohydrates play important roles in plant growth and development, in stress responses, and as signal molecules. We exploited natural variation in Arabidopsis (Arabidopsis thaliana) to decipher the genetic architecture determining carbohydrate content. A quantitative trait locus (QTL) approach in the Bay-0 x Shahdara progeny(More)
Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques(More)
In plants, water and anion parameters are linked, for example through the integration of nutritional signaling and the response to diverse stress. In this work, Arabidopsis thaliana is used as a model system to dissect the genetic variation of these parameters by quantitative trait loci (QTL) mapping in the 415 recombinant inbred lines of the Bay-0 x(More)
Audrey Macquet,a Marie-Christine Ralet,b Olivier Loudet,c Jocelyne Kronenberger,a Gregory Mouille,d Annie Marion-Poll,a and Helen M. Northa,1 a Laboratoire de Biologie des Semences, Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique, AgroParisTech, Institut Jean-Pierre Bourgin, F-78026 Versailles Cedex, France b Institut National de(More)
Genetic analysis of natural variation in ecotypes of Arabidopsis thaliana can facilitate the discovery of new genes or of allelic variants of previously identified genes controlling physiological processes in plants. We mapped quantitative trait loci (QTL) for light response in recombinant inbred lines (RILs) derived from the Columbia and Kashmir accessions(More)