Learn More
Although opioids are highly effective for the treatment of pain, they are also known to be intensely addictive. There has been a massive research investment in the development of opioid analgesics, resulting in a plethora of compounds with varying affinity and efficacy at all the known opioid receptor subtypes. Although compounds of extremely high potency(More)
Adenosine is present in the mammalian brain in large amounts and has potent effects on neuronal activity, but its role in neural signaling is poorly understood. The glutamate receptor agonist N-methyl-D-aspartate (NMDA) caused a presynaptic depression of excitatory synaptic transmission in the CA1 region of guinea pig hippocampal slices. This depression was(More)
Do endocannabinoids (eCBs) participate in long-term synaptic plasticity in the brain? Using pharmacological approaches and genetically altered mice, we show that stimulation of prelimbic cortex afferents at naturally occurring frequencies causes a long-term depression of nucleus accumbens glutamatergic synapses mediated by eCB release and presynaptic CB1(More)
The nucleus accumbens (NAc) is an important cerebral area involved in reward and spatial memory (Pennartz et al., 1994), but little is known about synaptic plasticity in this region. Here, electron microscopy revealed that, in the NAc, metabotropic gluta-mate receptors 2/3 (mGlu2/3) immunostaining was essentially associated with axonal terminals and glial(More)
Chronic exposure to drugs of abuse induces countless modifications in brain physiology. However, the neurobiological adaptations specifically associated with the transition to addiction are unknown. Cocaine self-administration rapidly suppresses long-term depression (LTD), an important form of synaptic plasticity in the nucleus accumbens. Using a rat model(More)
Despite the role of excitatory transmission to the nucleus accumbens (NAc) in the actions of most drugs of abuse, the presence and functions of cannabinoid receptors (CB1) on the glutamatergic cortical afferents to the NAc have never been explored. Here, immunohistochemistry has been used to show the localization of CB1 receptors on axonal terminals making(More)
The regulation of glutamate (Glu) release from the excitatory input to dopamine cells in the ventral tegmental area (VTA) during acute withdrawal from morphine was studied in slices from animals treated for 6-7 d with morphine. EPSCs were inhibited by opioid agonists acting at micro-subtype receptors but not by selective delta- or kappa-subtype agonists.(More)
Morphine is a highly potent analgesic with high addictive potential in specific contexts. Although dopamine neurons of the ventral tegmental area (VTA) are widely believed to play an essential role in the development of drug addiction, neuronal circuits underlying morphine action on dopamine neurons have not been fully elucidated. Here we combined in vivo(More)
BACKGROUND Cannabinoids have deleterious effects on prefrontal cortex (PFC)-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid) system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in(More)
In the nucleus accumbens (NAc), a key structure to the effects of all addictive drugs, presynaptic cannabinoid CB1 receptors (CB1Rs) and postsynaptic metabotropic glutamate 5 receptors (mGluR5s) are the principal effectors of endocannabinoid (eCB)-mediated retrograde long-term depression (LTD) (eCB-LTD) at the prefrontal cortex-NAc synapses. Both CB1R and(More)