Learn More
A defective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not(More)
Ataxia oculomotor apraxia type 2 (AOA2) is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia and oculomotor apraxia. The gene mutated in AOA2, SETX, encodes senataxin, a putative DNA/RNA helicase which shares high homology to the yeast Sen1p protein and has been shown to play a role in the response to oxidative stress. To(More)
Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1 (AOA1), is a DNA repair protein that processes the product of abortive ligations, 5' adenylated DNA. In addition to its interaction with the single-strand break repair protein XRCC1, aprataxin also interacts with poly-ADP ribose polymerase 1 (PARP-1), a key player in the(More)
Ataxia-oculomotor apraxia (AOA1) is a neurological disorder with symptoms that overlap those of ataxia-telangiectasia, a syndrome characterized by abnormal responses to double-strand DNA breaks and genome instability. The gene mutated in AOA1, APTX, is predicted to code for a protein called aprataxin that contains domains of homology with proteins involved(More)
Aromatic amines have been studied for more than a half-century as model carcinogens representing a class of chemicals that form bulky adducts to the C8 position of guanine in DNA. Among these guanine adducts, the N-(2'-deoxyguanosin-8-yl)-aminofluorene (G-AF) and N-2-(2'-deoxyguanosin-8-yl)-acetylaminofluorene (G-AAF) derivatives are the best studied.(More)
Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent(More)
Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we(More)
Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during(More)
In a large group of organisms including low G + C bacteria and eukaryotic cells, DNA synthesis at the replication fork strictly requires two distinct replicative DNA polymerases. These are designated pol C and DnaE in Bacillus subtilis. We recently proposed that DnaE might be preferentially involved in lagging strand synthesis, whereas pol C would mainly(More)
The genetic information is continuously subjected to the attack by endogenous and exogenous chemical and physical carcinogens that damage the DNA template, thus compromising its biochemical functions. Despite the multiple and efficient DNA repair systems that have evolved to cope with the large variety of damages, some lesions may persist and, as a(More)