Learn More
In this paper, we present the features of Romeo, a Time Petri Net (TPN) analyzer. The tool Romeo allows state space computation of TPN and on-the-fly model-checking of reachability properties. It performs translations from TPNs to Timed Automata (TAs) that preserve the behavioural semantics (timed bisimilarity) of the TPNs. Besides , our tool also deals(More)
At the border between control and verification, parametric verification can be used to synthesize constraints on the parameters to ensure that a system verifies given specifications. In this paper we propose a new framework for the parametric verification of time Petri nets with stopwatches. We first introduce a parametric extension of time Petri nets with(More)
In order to analyze whether timing requirements of a real-time application are met, we propose an extension of the T-time Petri net model which takes into account the scheduling of the software tasks distributed over a multi-processor hardware architecture. The paper is concerned with static priority pre-emptive based scheduling. This extension consists in(More)
Several extensions of Time Petri nets (TPNs) have been proposed for modeling suspension and resumption of actions in timed systems. We first introduce a simple class of TPNs extended with stopwatches (SwTPNs), and present a semi-algorithm for building exact representations of the behavior of SwTPNs, based on the known state class method for Time Petri nets.(More)
In this paper, we consider Time Petri Nets (TPN) where time is associated with transitions. We give a formal semantics for TPNs in terms of Timed Transition Systems. Then, we propose a translation from TPNs to Timed Automata (TA) that preserves the behavioral semantics (timed bisimilarity) of the TPNs. For the theory of TPNs this result is twofold: i)(More)
In this paper, we define Time Petri Nets with Inhibitor Hy-perarcs (IHTPN) as an extension of T-time Petri nets where time is associated with transitions. In this model, we consider stopwatches associated with transitions which can be reset, stopped and started by using classical arcs and branch inhibitor hyperarcs introduced by Jan-icki and Koutny [1]. We(More)
Last time we reported on Romeo, analyses with this tool were mostly based on translations to other tools. This new version provides an integrated TCTL model-checker and has gained in expressivity with the addition of parameters. Although there exists other tools to compute the state-space of stopwatch models, Romeo is the first one that performs TCTL(More)
In this paper we study the model of Time Petri Nets (TPNs) where a time interval is associated with the firing of a transition, but we extend it by considering general intervals rather than closed ones. A key feature of timed models is the memory policy, i.e. which timing informa-tions are kept when a transition is fired. The original model selects an(More)
In this paper we consider the model of Time Petri Nets (TPN) where time is associated with transitions. We also consider Timed Automata (TA) as defined by Alur & Dill, and compare the expressive-ness of the two models w.r.t. timed language acceptance and (weak) timed bisimilarity. We first prove that there exists a TA A s.t. there is no TPN (even unbounded)(More)
In this paper, we propose a method for the verification of timed properties for real-time systems featuring a preemptive scheduling policy: the system, modeled as a scheduling time Petri net, is first translated into a linear hybrid automaton to which it is time-bisimilar. Timed properties can then be verified using HyTech. The efficiency of this approach(More)