Olivier Dousse

Learn More
An achievable bit rate per source-destination pair in a wireless network of n randomly located nodes is determined adopting the scaling limit approach of statistical physics. It is shown that randomly scattered nodes can achieve, with high probability, the same 1/radicn transmission rate of arbitrarily located nodes. This contrasts with previous results(More)
Wireless networks are fundamentally limited by the intensity of the received signals and by their interference. Since both of these quantities depend on the spatial location of the nodes, mathematical techniques have been developed in the last decade to provide communication-theoretic results accounting for the network’s geometrical configuration. Often,(More)
This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of related mobile data analysis methodologies. First we review the Lausanne Data Collection Campaign (LDCC) – an initiative to collect unique,(More)
Previous work on the coverage of mobile sensor networks focuses on algorithms to reposition sensors in order to achieve a static configuration with an enlarged covered area. In this paper, we study the dynamic aspects of the coverage of a mobile sensor network that depend on the process of sensor movement. As time goes by, a position is more likely to be(More)
Mobile phones have recently been used to collect large-scale continuous data about human behavior. In a paradigm known as people centric sensing, users are not only the carriers of sensing devices, but also the sources and consumers of sensed events. This paper describes a data collection campaign wherein Nokia N95 phones are allocated to a heterogeneous(More)
We study the impact of interferences on the connectivity of large-scale ad hoc networks, using percolation theory. We assume that a bi-directional connection can be set up between two nodes if the signal to noise ratio at the receiver is larger than some threshold. The noise is the sum of the contribution of interferences from all other nodes, weighted by a(More)
We consider the problem of how throughput in a wireless network with randomly located nodes scales as the number of users grows. Following the physical model of Gupta and Kumar, we show that randomly scattered nodes can achieve the optimal 1/ √ n per-node transmission rate of arbitrarily located nodes. This contrasts with previous achievable results(More)
We consider a wireless sensor network, where nodes switch between an active (on) and a sleeping (off) mode, to save energy. The basic assumptions are that the on/off schedules are completely uncoordinated and that the sensors are distributed according to a Poisson process and their connectivity ranges are larger or equal to their sensing ranges. Moreover,(More)
Continuum percolation models in which pairs of points of a two-dimensional Poisson point process are connected if they are within some range of each other have been extensively studied. This paper considers a variation in which a connection between two points depends not only on their Euclidean distance, but also on the positions of all other points of the(More)