Olivier Delestre

Learn More
We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously(More)
Numerous codes are being developed to solve Shallow Water equations. Because there are used in hydraulic and environmental studies, their capability to simulate properly flow dynamics is critical to guarantee infrastructure and human safety. While validating these codes is an important issue, code validations are currently restricted because analytic(More)
Le ruissellement sur les terres agricoles peut avoir des effets indésirables tels que l'érosion des sols, les inondations et le transport de polluants. Afin de mieux comprendre ce phénomène et d'en limiter les conséquences, nous avons développé un code à l'aide de méthodes numériques récentes : FullSWOF (Full Shallow Water equations for Overland Flow) un(More)
Abstract. We are interested in simulating overland flow on agricultural fields during rainfall events. In this context, we definitely have to cope with dry/wet interfaces and water inflow on dry soil. The model considered is the Shallow Water system (or Saint-Venant equations) without infiltration. Moreover, the model has to be completed with friction(More)
In this paper, we perform a comparison of two approaches for the parallelization of an existing, free software, FullSWOF 2D (http://www. univ-orleans.fr/mapmo/soft/FullSWOF/ that solves shallow water equations for applications in hydrology) based on a domain decomposition strategy. The first approach is based on the classical MPI library while the second(More)
In this note we are interested in the modelling of sediment transport phenomena. We mostly focus on bedload transport and we do not consider suspension sediment processes. We first propose a coupled numerical scheme for the classical Saint-Venant – Exner model. It is based on a relaxation approach and it works with all sediment flux function. We exhibit(More)