Olivier Bouré

Learn More
Typically viewed as a deterministic model of spatial computing, cellular automata are here considered as a collective system subject to the noise inherent to natural computing. The classical updating scheme is replaced by stochastic versions which either randomly update cells or disrupt the cell-to-cell transmission of information. We then use the novel(More)
Cellular automata are classically synchronous: all cells are simultaneously updated. However, it has been proved that perturbations in the updating scheme may induce qualitative changes of behaviours. This paper presents a new type of asynchronism, the β-synchronism, where cells still update at each time step but where the transmission of information(More)
Lattice-gas cellular automata are often considered as a particular case of cellular automata in which additional constraints apply, such as conservation of particles or spatial exclusion. But what about their updating? How to deal with non-perfect synchrony? Novel definitions of asynchronism are proposed that respect the specific hypotheses of lattice-gas(More)
Research in biology is increasingly interested in discrete dynamical systems to simulate natural phenomena with simple models. But how to take into account their robustness? We illustrate this issue by considering the behaviour of a lattice-gas model with an alignment-favouring interaction rule. This model, which has been shown to display a phase transition(More)
This paper intends to revisit the behaviour of a lattice-gas cellular automaton model of swarming, in which particles are oriented according to an interaction rule that favours local alignment. This model has been shown to display a phase transition between an ordered and a disordered phase in a parametrical plane of the particle density and alignment(More)
  • 1